0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Виды схем начисления процентов

Формула расчета процентов по вкладам (депозитам)

От простого к сложному.

Для начисления процентов по вкладам (депозитам), да и кредитам тоже, применяются следующие формулы:

  1. формула простых процентов,
  2. формула сложных процентов.

Порядок начисления процентов по вышеперечисленным формулам осуществляется с использованием фиксированной или плавающей ставки. Чтобы не возвращаться к данному вопросу в дальнейшем, сразу поясню значение слов и отличия фиксированной ставки и плавающей ставки.

Фиксированная ставка, это когда установленная по вкладу банка процентная ставка, закреплена в депозитном договоре и остается неизменной весь срок вложения средств, т.е. фиксируется. Такая ставка может измениться только в момент автоматической пролонгации договора на новый срок или при досрочном расторжении договорных отношений и выплате процентов за фактический срок вложения по ставке «до востребования», что оговаривается условиями.

Плавающая ставка, это когда первоначально установленная по договору процентная ставка может меняться в течение всего срока вложения. Условия и порядок изменения ставок оговариваются в депозитном договоре. Процентные ставки могут изменяться: в связи с изменениями ставки рефинансирования, с изменением курса валюты, с переходом суммы вклада в другую категорию, и другими факторами.

Для начисления процентов с применением формул, необходимо знать параметры вложения средств на депозитный счет, а именно:

  • сумму вклада (депозита),
  • процентную ставку по выбранному вкладу (депозиту),
  • цикличность начисления процентов (ежедневно, ежемесячно, ежеквартально и т.д.),
  • срок размещения вклада (депозита),
  • иногда требуется и вид используемой процентной ставки — фиксированной или плавающей.

Теперь давайте рассмотрим названные выше стандартные формулы процентов, которые применяются для расчета процентов по вкладам (депозитам).

Формула простых процентов

Формула простых процентов применяется, если начисляемые на вклад проценты причисляются к вкладу только в конце срока депозита или вообще не причисляются, а переводятся на отдельный счет, т.е. расчет простых процентов не предусматривает капитализации процентов.

При выборе вида вклада, на порядок начисления процентов стоит обращать внимание. Когда сумма вклада и срок размещения значительные, а банком применяется формула простых процентов, это приводит к занижению суммы процентного дохода вкладчика. Формула простых процентов по вкладам выглядит так:

Значение символов:
S — сумма денежных средств, причитающихся к возврату вкладчику по окончании срока депозита. Она состоит из первоначальной суммы размещенных денежных средств, плюс начисленные проценты.
I – годовая процентная ставка
t – количество дней начисления процентов по привлеченному вкладу
K – количество дней в календарном году (365 или 366)
P – первоначальная сумма привлеченных в депозит денежных средств
Sp – сумма процентов (доходов).

А чтобы рассчитать только сумму простых процентов формула будет выглядеть так:

Значение символов:
Sp – сумма процентов (доходов).
I – годовая процентная ставка
t – количество дней начисления процентов по привлеченному вкладу
K – количество дней в календарном году (365 или 366)
P – сумма привлеченных в депозит денежных средств.

Приведу условные примеры расчета простых процентов и суммы банковского депозита с простыми процентами:

Пример 1. Предположим, что банком принят депозит в сумме 50000 рублей на срок 30 дней. Фиксированная процентная ставка — 10,5 % «годовых». Применяя формулы, получаем следующие результаты:

S = 50000 + 50000 * 10,5 * 30 / 365 / 100 = 50431,51

Sp = 50000 * 10,5 * 30 / 365 / 100 = 431,51

Пример 2. Банком принят депозит в той же сумме 50000 рублей сроком на 3 месяца (90 дней) по фиксированной ставке 10,5 процентов «годовых». В условиях поменялся только срок вложения.

S = 50000 + 50000 * 10,5 * 90 / 365 / 100 = 51294,52

Sp = 50000 * 10,5 * 90 / 365 / 100 = 1294,52

При сравнении двух примеров видно, что сумма ежемесячно начисленных процентов по формуле простых процентов не меняется.

431,51 * 3 месяца = 1294,52 рубля.

Пример 3. Банком принят депозит в сумме 50000 рублей сроком на 3 месяца (90 дней) по фиксированной ставке 10,5 процентов «годовых». Вклад пополняемый, и на 61 день произведено пополнение вклада в сумме 10000 рублей.

S1 =50000 + 50000 * 10,5 * 60 / 365 / 100 = 50863.01
Sp1 = 50000 * 10,5 * 60 / 365 / 100 = 863.01

S2 = 60000 + 60000 * 10,5 * 30 / 365 / 100 = 60517.81
Sp2 = 60000 * 10,5 * 30 / 365 / 100 = 517.81

Sp = Sp1 + Sp2 = 50000 * 10,5 * 60 / 365 / 100 + 60000 * 10,5 * 30 / 365 / 100 = 863,01 + 517,81 = 1380,82

Пример 4. Банком принят депозит в той же сумме 50000 рублей сроком на 3 месяца (90 дней), по плавающей ставке. На первый месяц (30 дней) процентная ставка — 10,5 %, на последующие 2 месяца (60 дней) процентная ставка – 12 %.

S1 = 50000 + 50000 * 10,5 * 30 / 365 / 100 = 50000 + 431,51 = 50431.51
Sp1 = 50000 * 10,5 * 30 / 365 / 100 = 431,51

S2 = 50000 + 50000 * 12 * 60 / 365 / 100 = 50000 + 986,3 = 50986.3
Sp2 = 50000 * 12 * 60 / 365 / 100 = 986,3

Sp = 50000 * 10,5 * 30 / 365 / 100 + 50000 * 12 * 60 / 365 / 100 = 431,51 + 986,3 = 1417,81

Формула сложных процентов

Формула сложных процентов применяется, если начисление процентов по вкладу, осуществляется через равные промежутки времени (ежедневно, ежемесячно, ежеквартально) а начисленные проценты причисляются к вкладу, т. е. расчет сложных процентов предусматривает капитализацию процентов (начисление процентов на проценты).

Большинство банков, предлагают вклады с поквартальной капитализацией (Сбербанк России, ВТБ и т. д.), т.е. с начислением сложных процентов. А некоторые банки, в условиях по вкладам предлагают капитализацию по окончанию срока вложения, т.е. когда вклад пролонгируется на следующий срок, что, мягко говоря, относится к рекламному трюку, который подталкивает вкладчика не забирать начисляемые проценты, но само начисление процентов фактически осуществляется по формуле простых процентов. И повторюсь, когда сумма вклада и срок размещения значительные, такая «капитализация» не приводит к увеличению суммы процентного дохода вкладчика, ведь начисления процентов на полученные в предыдущих периодах процентные доходы нет.
Формула сложных процентов выглядит так:

Значение символов:
I – годовая процентная ставка;
j – количество календарных дней в периоде, по итогам которого банк производит капитализацию начисленных процентов;
K – количество дней в календарном году (365 или 366);
P – первоначальная сумма привлеченных в депозит денежных средств;
n — количество операций по капитализации начисленных процентов в течение общего срока привлечения денежных средств;
S — сумма денежных средств, причитающихся к возврату вкладчику по окончании срока депозита. Она состоит из суммы вклада (депозита) с процентами.

Расчет только сложных процентов с помощью формулы, будет выглядеть так:

Значение символов:
I – годовая процентная ставка;
j – количество календарных дней в периоде, по итогам которого банк производит капитализацию начисленных процентов;
K – количество дней в календарном году (365 или 366);
P – первоначальная сумма привлеченных в депозит денежных средств;
n — количество операций по капитализации начисленных процентов в течение общего срока привлечения денежных средств;
Sp – сумма процентов (доходов).

Приведу условный пример расчета сложных процентов и суммы банковского депозита со сложными процентами:

Пример 5. Принят депозит в сумме 50 тыс. руб. сроком на 90 дней по фиксированной ставке 10,5 процентов годовых. Начисление процентов – ежемесячно. Следовательно, количество операций по капитализации начисленных процентов (п) в течение 90 дней составит – 3. А количество календарных дней в периоде, по итогам которого банк производит капитализацию начисленных процентов (j) составит – 30 дней (90/3). Какова будет сумма процентов?

S = 50000 * (1 + 10,5 * 30 / 365 / 100)3 = 51305,72
Sp = 50000 * (1 + 10,5 * 30 / 365 / 100)3 — 50000 = 1305,72
Убедиться в правильности суммы процентов, рассчитанный по методу сложных процентов можно, перепроверив расчет с помощью формулы простых процентов.

Для этого разобьем срок депозита на 3 самостоятельных периода(3 месяца) по 30 дней и рассчитаем проценты для каждого периода, использую формулу простых процентов. Сумму депозита в каждом следующем периоде будем брать с учетом процентов за предыдущие периоды. В результате расчета получилось:

Понятие простого и сложного процента

Предоставляя денежные средства в долг, их владелец получа­ет определенный доход в виде процентов, начисляемых по некото­рому алгоритму в течение определенного промежутка времени. Поскольку стандартным временным интервалом в финансовых опе­рациях является 1 год, наиболее распространен вариант, когда про­центная ставка устанавливается в виде годовой ставки, подразуме­вающей однократное начисление процентов по истечении года пос­ле получения ссуды. Известны две основные схемы дискретного начисления:

Читать еще:  Creditonua условия кредитования

• схема простых процентов (simple interest);

• схема сложных процентов (compound interest).

Схема простых процентов предполагает неизменность базы, с ко­торой происходит начисление. Пусть исходный инвестируемый ка­питал равен Р; требуемая доходность — г (в долях единицы). Счи­тается, что инвестиция сделана на условиях простого процента, если инвестированный капитал ежегодно увеличивается на величину Pr. Таким образом, размер инвестированного капитала (Rn) через п лет будет равен:

Считается, что инвестиция сделана на условиях сложного про­цента, если очередной годовой доход исчисляется не с исходной ве­личины инвестированного капитала, а с обшей суммы, включающей также и ранее начисленные и не востребованные инвестором про­центы. В этом случае происходит капитализация процентов по мере их начисления, т.е. база, с которой начисляются проценты, все время возрастает. Следовательно, размер инвестированного капитала будет равен:

к концу первого года: FV1 = Р + Рr = Р(1+ r);

к концу второго года: FV2= FV1 + FV1r = FV1 *(1 + г) = P * (1+ r) 2 ;

к концу n-го года: FVn = P*(1+r) n

Как же соотносятся величины Rn и Fn. Это чрезвычайно важно знать при проведении финансовых операций. Все зависит от величи­ны п

Графически взаимосвязь можно представить следующим образом (рис. 2).

Рис.2 Простая и сложные схемы наращения капиталаТаким образом, в случае ежегодного начисления процентов для лица, предоставляющего кредит:

• более выгодной является схема простых процентов, если срок ссуды менее одного года (проценты начисляются однократно в конце периода);

• более выгодной является схема сложных процентов, если срок ссуды превышает один год (проценты начисляются ежегодно);

• обе схемы дают одинаковые результаты при продолжительнос­ти периода один год и однократном начислении процентов.

В случае краткосрочных ссуд со сроком погашения до одного года в качестве показателя п берется величина, характеризующая удельный вес длины подпериода (дни, месяц, квартал, полугодие) в общем пе­риоде (год). Длина различных временных интервалов в расчетах мо­жет округляться: месяц — 30 дней; квартал — 90 дней; полугодие — 180 дней; год — 360 (или 365,366) дней.

Рассчитать наращенную сумму с исходной суммы в 1 тыс. руб. при размещении ее в банке на условиях начисления простых и сложных процентов, если: а) годовая ставка 20%; б) периоды наращения: 90 дней, 180 дней, 1 год, 5 лет, 10 лет (если считать, что в году 360 дней).

Результаты расчетов имеют следующий вид:(тыс.руб.)

Таким образом, если денежные средства размещены в банке на срок в 90 дней (менее одного года), то наращенная сумма составит: при использовании схемы простых процентов — 1,05 тыс. руб.; при ис­пользовании схемы сложных процентов — 1,0466 тыс. руб. Следова­тельно, более выгодна первая схема (разница — 3,4 руб.). Если срок размещения денежных средств превышает один год, ситуация меня­ется диаметрально — более выгодна схема сложных процентов, причем наращение в этом случае идет очень быстрыми темпами. Так, при ставке 20% годовых удвоение исходной суммы происходит следую­щим темпом; при использовании схемы простых процентов—за пять лет, а при использовании схемы сложных процентов — менее чем за четыре года.

Использование в расчетах сложного процента в случае многократ­ного его начисления более логично, поскольку в этом случае капитал, генерирующий доходы, постоянно возрастает. При применении про­стого процента доходы по мере их начисления целесообразно снимать для потребления или использования в других инвестиционных про­ектах или текущей деятельности.

Формула сложных процентов является одной из базовых формул в финансовых вычислениях, поэтому для удобства пользования значе­ния множителя FM1(r, n), называемого мультиплицирующим множи­телем для единичного платежа, обеспечивающего наращение сто­имости, табулированы для различных значений r и n (см. приложение 3).

Формула наращения по схеме сложных процентов имеет вид:

FVn=P(1+r) n = P FM 1 (r, n), где

FVn –сумма, ожидаемая к поступлению через п базисных периодов;

r – ставка наращивания

FM 1 (r, n),- мультиплицирующий множитель.

Множитель FM1 (r,n)= (1+r) n

Экономический смысл множителя FM1(r, п) состоит в следующем: он показывает, чему будет равна одна денежная единица (один рубль, один доллар, одна иена и т.п.) через п периодов при заданной про­центной ставке r, т.е. он оценивает будущую стоимость одной денежной единицы. Подчеркнем, что при пользовании этой и последу­ющими финансовыми таблицами необходимо следить за соответстви­ем длины периода и процентной ставки. Так, если базисным перио­дом начисления процентов является квартал, то в расчетах должна использоваться квартальная ставка.

3.3.2. ОБЛАСТИ ПРИМЕНЕНИЯ СХЕМЫ ПРОСТЫХ ПРОЦЕНТОВ

На практике многие финансовые операции выполняются в рамках одного года, при этом могут использоваться различные схемы и мето­ды начисления процентов. В частности, большое распространение имеют краткосрочные ссуды, т.е. ссуды, предоставляемые на срок до одного года с однократным начислением процентов. Как отмечалось выше, в этом случае для кредитора, диктующего чаще всего условия финансового контракта, более выгодна схема простых процентов, при этом в расчетах используют промежуточную процентную ставку, ко­торая равна доле годовой ставки, пропорциональной доле временно­го интервала в году.

где r— годовая процентная ставка в долях единицы;

t— продолжительность финансовой операции в днях;

T — количество дней в году;

f — относительная длина периода до погашения ссуды.

Для наглядности формулу (7.5) можно записать следующим образом:

F = P* (1+t*r/T), т.е. дробь r/Т представляет собой дневную ставку, а произведение t * r/Т— ставку за t дней.

Определяя продолжительность финансовой операции, принято день выдачи и день погашения ссуды считать за один день. В зависи­мости от того, чему берется равной продолжительность (года, кварта­ла, месяца), размер промежуточной процентной ставки может быть различным. Возможны два варианта:

• точный процент, определяемый исходя из точного числа дней в году (365 или 366), в квартале (от 89 до 92), в месяце (от 28 до 31);

• обыкновенный процент, определяемый исходя из приближенно­го числа дней в году, квартале и месяце (соответственно 360, 90, 30).

При определении продолжительности периода, на который выда­на ссуда, также возможны два варианта:

• принимается в расчет точное число дней ссуды (расчет ведется по дням);

• принимается в расчет приблизительное число дней ссуды (ис­ходя из продолжительности месяца в 30 дней).

Для упрощения процедуры расчета точного числа дней пользу­ются специальными таблицами (одна для обычного года, вторая для високосного), в которых все дни в году последовательно пронумеро­ваны. Продолжительность финансовой операции определяется вы­читанием номера первого дня из номера последнего дня (приложе­ние 2).

3.3.3. ВНУТРИГОДОВЫЕ ПРОЦЕНТНЫЕ НАЧИСЛЕНИЯ

В практике выплаты дивидендов нередко оговаривается величина годового процента и количество периодов начисления процентов. В этом случае расчет ведется по формуле сложных процентов по подин­тервалам и по ставке, равной пропорциональной доле исходной годо­вой ставки по формуле

Fn=P*(1+r/m) n * m , где г — объявленная годовая ставка; m — количество начислений в году; n — количество лет.

Вложены деньги в банк в сумме 5 тыс. руб. на два года с полугодо­вым начислением процентов под 20% годовых. В этом случае начис­ление процентов производится четыре раза по ставке 10% (20% : 2), а схема возрастания капитала будет иметь вид:

Период Сумма, с которой идет Ставка Сумма к концу

начисление (в долях ед.) периода

6 месяцев 5,0 х 1,10 = 5,5

12 месяцев 5,5 х 1,10 = 6,05

18 месяцев 6,05 х 1,10 = 6,655

24 месяца 6,655 х 1,10 = 7,3205

Если пользоваться формулой (7.7), то m = 2, п = 2, следовательно: Fn = 5 * (1 + 20% : 100% : 2) 4 = 7,3205 тыс. руб.

В условиях предыдущего примера проанализировать, изменится ли величина капитала к концу двухлетнего периода, если бы проценты начислялись ежеквартально.

В этом случае начисление будет производиться восемь раз по став­ке 5% (20% : 4), а сумма к концу двухлетнего периода составит:

Fn = 5 * (1 + 0,2/4) 8 = 7,387 тыс. руб.

Таким образом, можно сделать несколько простых практических выводов:

при начислении процентов: 12% годовых не эквивалентны 1% в месяц (эта ошибка очень распространена среди начинающих биз­несменов);

чем чаще идет начисление по схеме сложных процентов, тем больше итоговая накопленная сумма.

Заметим, что для простых процентов такие выводы не имеют место. Одно из характерных свойств наращения по простым про­центам заключается в том, что наращенная сумма не изменяется с увеличением частоты начислений простых процентов. Например, наращение Простыми процентами ежегодно по ставке 10% годовых дает тот же результат, что и ежеквартальное наращение простыми процентами по ставке 2,5% за квартал. При наращении по сложным процентам ежеквартальное начисление составляет больший резуль­тат, чем ежегодное.

Читать еще:  9 советов как максимально быстро закрыть все свои кредиты

3.3.4. НАЧИСЛЕНИЕ ПРОЦЕНТОВ ЗА ДРОБНОЕ ЧИСЛО ЛЕТ

Достаточно обыденными являются финансовые контракты, заклю­чаемые на период, отличающийся от целого числа лет. В этом случае проценты могут начисляться одним из двух методов:

• по схеме сложных процентов:

• по смешанной схеме (используется схема сложных процентов для целого числа лет и схема простых процентов — для дробной час­ти года):

гае w — целое число лет; /— дробная часть года.

Банк предоставил ссуду в размере 10 тыс. руб. на 30 месяцев под 30% годовых на условиях ежегодного начисления процентов. Какую сумму предстоит вернуть банку по истечении срока?

По формуле (7.8): Fn = 10 • (1 + 0,3) 2+0-5 = 19,269 тыс. руб.

По формуле (7.9): Fn = 10 • (1 + 0,3) 2 • (1 + 0,3 ∙ 0,5) =19,435 тыс. руб.

Таким образом, в условиях задачи смешанная схема начисления процентов более выгодна для банка.

3.3.5. ЭФФЕКТИВНАЯ ГОДОВАЯ ПРОЦЕНТНАЯ СТАВКА

Различными видами финансовых контрактов могут предусматри­ваться различные схемы начисления процентов. Как правило, в этих контрактах оговаривается номинальная процентная ставка, обычно годовая. Эта ставка, во-первых, не отражает реальной эффективности сделки и, во-вторых, не может быть использована для сопоставлений. Для того чтобы обеспечить сравнительный анализ эффективности та­ких контрактов, необходимо выбрать некий показатель, который был бы универсальным для любой схемы начисления. Таким показателем является эффективная годовая процентная ставка ге, обеспечивающая переход от Р к Fn при заданных значениях этих показателей и одно­кратном начислении процентов.

Общая постановка задачи может быть сформулирована следующим образом. Задана исходная сумма Р, годовая процентная ставка (номи­нальная) r, число начислений сложных процентов m. Этому набору исходных величин в рамках одного года соответствует вполне опре­деленное значение наращенной величины F1. Требуется найти такую годовую ставку ге, которая обеспечила бы точно такое же наращение, как и исходная схема, но при однократном начислении процентов, т.е. m = 1. Иными словами, схемы <Р, F1, r, m> 1> и1, re, m = 1> должны быть равносильными.

Из формулы (3.7) следует, что в рамках одного года

Из определения эффективной годовой процентной ставки получа­ется, что

Из формулы (3.13) следует, что эффективная ставка зависит от ко­личества внутригодовых начислений, причем с ростом m она увели­чивается. Кроме того, для каждой номинальной ставки можно найти соответствующую ей эффективную ставку; две эти ставки совпадают лишь при m = 1. Именно ставка rе является критерием эффективности финансовой сделки и может быть использована для пространствен­но-временных сопоставлений.

Предприниматель может получить ссуду: а) либо на условиях еже­месячного начисления процентов из расчета 26% годовых, б) либо на условиях полугодового начисления процентов из расчета 27% годо­вых. Какой вариант более предпочтителен?

Относительные расходы предпринимателя по обслуживанию ссу­ды могут быть определены с помощью расчета эффективной годовой процентной ставки — чем она выше, тем больше уровень расходов. По формуле (3.13):

rе = ( 1 + 0,26/12) 12 — 1 = 0,2933, или 29,3%;

гe = (1 + 0,27/2) 2 — 1 = 0,2882, или 28,8%.

Таким образом, вариант (б) является более предпочтительным для предпринимателя. Необходимо отметить, что принятие решения не зависит от величины кредита, поскольку критерием является относи­тельный показатель — эффективная ставка, а она, как следует из фор­мулы (3.13), зависит лишь от номинальной ставки и количества на­числений.

Понимание роли эффективной процентной ставки чрезвычайно важно для финансового менеджера. Принятие решения о привлече­нии средств, например банковской ссуды на тех или иных условиях, делается чаще всего исходя из приемлемости предлагаемой процен­тной ставки, которая в этом случае характеризует относительные рас­ходы заемщика. В рекламных проспектах непроизвольно или умыш­ленно внимание на природе ставки обычно не акцентируется, хотя в подавляющем числе случаев речь идет о номинальной ставке, ко­торая может весьма существенно отличаться от эффективной ставки. Рассмотрим простейший пример.

Рассчитать эффективную годовую процентную ставку при различ­ной частоте начисления процентов, если номинальная ставка равна 10%. По формуле (3.13):

Финансовый менеджмент: Учебник

Глава 4. Основы финансовой математики

4.1.Процентные ставки и методы их начисления

4.1.5. Использование схем начисления процентов

Можно показать, что в случае ежегодного начисления процентов для лица, предоставляющего кредит:

• более выгодна схема простых процентов, если срок ссуды менее одного года (проценты начисляются однократно в конце периода);

• более выгодна схема сложных процентов, если срок ссуды превышает один год (проценты начисляются ежегодно);

• обе схемы дают одинаковые результаты при продолжительности периода один год и однократном начислении процентов.

Схему простых процентов используют в практике банковских расчетов при начислении процентов по краткосрочным ссудам со сроком погашения до одного года.

В этом случае в качестве показателя n берут величину, характеризующую удельный вес длины подпериода (дни, месяц, квартал, полугодие) в общем периоде (год).

Длина временных интервалов в расчетах может округляться: месяц — 30 дней; квартал — 90; полугодие — 180; год — 360 (или 365) дней.

Другой весьма распространенной операцией краткосрочного характера с использованием формулы простых процентов является операция по учету векселей банком. В этом случае пользуются формулами

где d — годовая дисконтная ставка в долях единицы;

t — продолжительность финансовой операции в днях;

Т — количество дней в году;

f — относительная длина периода до погашения ссуды (отметим, что операция имеет смысл, когда число в скобках не отрицательно).

Использование в расчетах сложного процента в случае многократного его начисления более логично, поскольку в этой ситуации капитал, генерирующий доходы, постоянно возрастает. Применяя простой процент, доходы по мере их начисления целесообразно снимать для потребления или использования в других инвестиционных проектах либо в текущей деятельности.

Пример. Тратта (переводной вексель) выдана на 10000 рублей с уплатой 15 октября того же года. Владелец векселя учел его в банке 15 августа по учетной ставке 10%. Сколько он получил? Сколько он получит, если срок уплаты по векселю 15 октября следующего года?

Решение. По условию FV= 10000, d=0.1, t= 60/360 (так как количество дней между 15 августа и 15 октября равно 60, а количество дней в году при банковском учете принимается равным 360). Поэтому, в первом случае владелец векселя получил:

Во втором случае (учитывая, что число дней между 15 августа и 15 октября следующего года равно 360+60=420) владелец векселя получил:

Формула сложных процентов — одна из базовых формул в финансовых вычислениях, поэтому для удобства пользования значения множителя FM1(r,n), называемого мультиплицирующим множителем и обеспечивающего наращение стоимости, табулированы для различных значений г и n. В таблице 4.1 Приведены некоторые затабулированные значения мультиплицирующего множителя.

Тогда формулу алгоритма наращения по схеме сложных процентов можно переписать так:

FM1(r,n) -мультиплицирующий множитель.

Таблица 4.1. Факторный множитель FM1(r,n)

Экономический смысл множителя FM1(r,n) состоит в следующем:

он показывает, чему будет равна одна денежная единица (один рубль, один доллар, одна иена и т.п.) через n периодов при заданной процентной ставке г.

Подчеркнем, что при пользовании финансовыми таблицами необходимо следить за соответствием длины периода и процентной ставки. Так, если за базисный период начисления процентов взят квартал, то в расчетах должна использоваться квартальная ставка.

Пример. 250 тыс. руб. инвестированы на 4 года под 6% годовых. Нужно вычислить сложные проценты, начисленные к концу срока.

Решение. По формуле (4.7) имеем P=250 , FM1(r,n)=1.262, Fn=250×1.262=315.61924 (тыс.руб.)

Соответственно, сложные проценты – это та прибыль, которую получает инвестор. Она равна:

315.61924 – 250 = 65.61924 (тыс.руб.)

В практике финансовых и коммерческих расчетов нередко оговаривается величина годового процента и частота начисления, отличная от ежегодной. В этом случае расчет ведется по формуле сложных процентов по подынтервалам и по ставке, равной пропорциональной доле исходной годовой ставки, по формуле

где r – объявленная годовая ставка;

m – количество начислений в году;

Читать еще:  Как исправить кредитную историю бесплатно топ8 проверенных способов

k – количество лет.

Пример. Найти наращенную сумму и сложные проценты, если 140 тысяч рублей инвестированы на два года по ставке 12% годовых при начислении процентов:

Решение. результаты вычислений по формуле (4.8) сведены в таблицу.

Число периодов начисления в году

Из решения видно. что при фиксированной годовой ставке с ростом количества начислений процентов в год абсолютный годовой доход растет.

Достаточно обычны финансовые контракты, заключаемые на период, отличающийся от целого числа лет. В этом случае проценты могут начисляться одним из двух методов:

• по схеме сложных процентов:

• по смешанной схеме (используется схема сложных процентов для целого числа лет и схема простых процентов для дробной части года):

где w- целое число лет;

f — дробная часть года.

Поскольку f (1+r) f ,наращенная сумма больше при использовании смешанной схемы. Возможны финансовые контракты, в которых начисление процентов осуществляется по внутригодовым подпериодам, а продолжительность общего периода действия контракта не равна целому числу подпериодов. В этом случае также возможно использование двух схем:

схема сложных процентов:

где k — количество лет;

m — количество начислений в году;

г — годовая ставка;

f — дробная часть подпериода.

Различными видами финансовых контрактом могут предусматриваться различные схемы начисления процентов. Как правило, в этих контрактах оговаривается номинальная процентная ставка, обычно годовая.

Эта ставка, во-первых, не отражает реальной эффективности сделки и, во-вторых, не может быть использована для сопоставлений. Для того чтобы обеспечить сравнительный анализ эффективности таких контрактов, необходимо выбрать некий показатель, который был бы универсальным для любой схемы начисления. Таким показателем является эффективная годовая процентная ставка re, обеспечивающая переход от Р к Fn при заданных значениях этих показателей и однократном начислении процентов и рассчитываемая по формуле:

Из формулы (4.11) следует, что эффективная ставка зависит от количества внутригодовых начислений, причем с ростом m она увеличивается. Кроме того, для каждой номинальной ставки можно найти соответствующую ей эффективную ставку; две эти ставки совпадают лишь при m = 1. Именно ставка cлужит критерием эффективности финансовой сделки и может быть использована для пространственно-временных сопоставлений.

Пример. Найти годовую эффективную процентную ставку, эквивалентную номинальной ставке 16% годовых при поквартальном начислении процентов.

Решение. Из формулы (4.13) имеем r=0.16 (16%), m = 4. re =

Годовая эффективная ставка приближенно равна 17%.

Как уже отмечалось, наращенная сумма увеличивается с ростом числа начислений в год при фиксированной годовй процентной ставке. Но коэффициент пересчета, то есть наращенная сумма на единицу инвестированного капитала, не превышает 2.72 (числа е – основания натурального логарифма.).

Поэтому, самая выгодная для инвестора ситуация – это непрерывное начисление процентов.

При непрерывном начислении процентов наращенная сумма задается экспоненциальной функцией:

где Р – основная (инвестированная сумма);

j – годовая ставка при непрерывном начислении процентов;

t – срок в годах.

Пример. Найти наращенное значение, если 100 тыс. руб. инвестированы на 5 лет по номинальной ставке 25% годовых для:

а) начисления один раз в году;

б) начисления два раза в году;

в) непрерывные начисления процентов по годовой ставке 25%.

Понимание роли эффективной процентной ставки чрезвычайно важно для финансового менеджера. Дело в том, что решение о привлечении средств, например банковской ссуды на тех или иных условиях, принимают чаще всего исходя из приемлемости предлагаемой процентной ставки, которая в этом случае характеризует относительные расходы заемщика. В рекламных проспектах непроизвольно или умышленно внимание на природе ставки обычно не акцентируют, хотя в подавляющем числе случаев речь идет о номинальной ставке, которая может весьма существенно отличаться от эффективной ставки.

Начисление по схеме простых процентов

Смысл простой схемы начисления процентов в том, что проценты начисляются все время на первоначальную сумму вклада независимо от срока вклада. В этом случае наращенная сумма находится по формуле

,

, т.е.

Пусть процентная ставка меняется во времени, т. е. в течение срока проценты начисляются по ставке, затем в течение срока– по ставкеи т. д. Тогда наращенная сумма находится по формуле

Пусть сумма вклада меняется во времени, т. е. в течение срока вклада на счет поступают (снимаются) суммы в размере ,и т. д. Тогда наращенная сумма находится по формуле

,

где – это срок с момента поступления (снятия) суммыдо момента окончания вклада,– срок с момента поступления (снятия) суммыдо момента окончания вклада.

На практике для вычисления процентов часто определяют процентное число и процентный ключ (дивизор). Если ставку i измерять в процентах, то

I =

Процентным числом назовем величину Р t / 100,

а процентным ключом – К / i.

С учетом последних двух формул сумма процентных денег может быть рассчитана так:

I =.

Пусть происходит реинвестирование по простой ставке, т. е. наращенная сумма к концу срока становится базой для расчета процентов на срок, сумма, наращенная к концу этого срока, становится базой для расчета процентов на сроки т. д. Тогда наращенная сумма к концу всего срока вклада находится по формуле:

Начисление по схеме сложных процентов

Смысл сложной схемы начисления процентов в том, что процентные деньги, начисленные после периода начисления (обычно, года), присоединяются к первоначальной сумме. Полученная сумма является базой для начисления процентов в следующем периоде. Таким образом, база для начисления сложных процентов, в отличие от простых процентов, увеличивается с каждым периодом начисления.

Если период начисления Т – целое число лет, то наращенная сумма находится по формуле:

Если срок вклада Т не является целым числом, то наращенная сумма может быть найдена по схемам:

– обыкновенной:

– смешанной: Т представляется в виде суммы целого числа лет и оставшейся нецелой части года Т= Тцел+ Тдроб, и наращенная сумма равна

Например, сумма в размере 100 тыс. руб. помещена в банк сроком на 27 месяцев под 12% годовых.

Наращенная сумма, рассчитанная по обыкновенной схеме, составляет:

=129,045 тыс. руб.

Поскольку 27 месяцев – это 2 года плюс 3 месяца, то Тцел=2, Тдроб=3/12=1/4=0,25, то наращенная сумма, рассчитанная по смешанной схеме, равна:

=129,203 тыс. руб.

Пусть процентная ставка меняется во времени, т. е. в течение срока проценты начисляются по ставке, затем в течение срока– по ставкеи т. д. Тогда наращенная сумма находится по формуле

Номинальная и эффективная ставка процента

Номинальная годовая ставка i – это исходная годовая ставка, которую назначает банк для начисления процентов. Номинальная ставка может начисляться один раз в год. Тогда наращенная сумма равна

Если же номинальная ставка начисляется несколько раз в год, то наращенная сумма находится по формуле

где – срок вклада (в годах),– число начислений процентов в год.

Например, если первоначальный размер вклада равен 100 тыс. руб., а номинальная ставка 12% годовых начисляется раз в год, то наращенная сумма через 2 года составит:

тыс. руб.,

а при ежеквартальном начислении процентов наращенная сумма равна:

=126,677 тыс. руб.

Эффективная ставка – это ставка, измеряющая реальный доход, получаемый при -кратном начислении процентов в год. Таким образом, выполняется равенство

и эффективная ставка может быть найдена по формуле

.

Пусть сумма вклада меняется во времени, т. е. на счет поступают суммы в размере (первоначальный взнос),и т. д. Тогда наращенная сумма находится по формуле

,

где – это срок с момента поступления (снятия) суммыдо момента окончания вклада,– срок с момента поступления (снятия) суммыдо момента окончания вклада.

Рассмотрим частный случай – начисление сложных процентов при регулярных взносах. Такое поступление денежных средств называется финансовой рентой с постоянными членами, а наращенная сумма всех взносов – наращенной суммой ренты.

Пусть на счет регулярно вносятся одинаковые суммы через одинаковые периоды времени (раз в год).

R размер ежегодного платежа;

n число лет, в течение которых поступают взносы.

Если выплаты производятся в конце года (рента постнумерандо), то наращенная сумма через n лет определяется по формуле

.

Если выплаты производятся в начале года (рента пренумерандо), то наращенная сумма через n лет определяется по формуле

.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector